Solar PV R&D: what are researchers working on?

George Marsh

Part 1. As we approach Intersolar US in San Francisco next month, Renewable Energy Focus whets the appetite by looking back at some of our coverage of solar PV R&D over the past few months.

Mainstream Solar PV research remains focused on the development of more efficient multi-junction PV cells – and with 50% efficiencies in sight, it is easy to see why. But efficiency at this level comes at high cost.

Concentration is potentially something that could be added to products to change the solar cost metrics. Such devices would need to be mass producible, affordable and requiring neither tracking nor cooling. Present solar concentrators need both these ‘add-ons’ to maintain all-day harvesting and to avoid the fall-off in conversion efficiency that accompanies rising cell temperature.

A technology promising these benefits is luminescent solar concentration (LSC). An LSC cell has two transparent plates (in a single-layer device) sandwiching a fluorescent (luminescent) material. This acts as a waveguide that traps light rays by total internal reflection and guides them to the plate edges, where they are therefore concentrated and can be absorbed by underlying solar PV cells.

Because PV cells only have to be located at a panel's edges and not uniformly across the whole panel, there is a great saving in PV material. Natural light entering the panel is in a waveband that does not get trapped, so it would pass right through were it not for the luminescent material. This fluoresces in response to the incident light, emitting at longer wavelengths that are trapped within the guide and subsequently concentrated.

In a quest for the most effective materials, researchers have achieved some success by embedding organic dyes into plastic sheets, with multicrystalline silicon PV cells being attached to the concentrator edges. When, for instance, workers at the University of California achieved a concentration factor of 4.3, it was recognised that, while modest, this could be useful in a low-concentration system – energy generating windows for instance – and could, in any case, be doubled using optical means.

Their system works for both direct and diffuse light, but dye longevity has been a problem – most organic dyes breaking down in weeks or months rather than years. Efforts to address this issue continue.

Researchers at the Massachusetts Institute of Technology (MIT) have improved efficiency by substituting a type of glass for plastic sheets, and by tackling the problem of light re-absorption in the waveguide caused by the fluorescent dyes absorbing a proportion of the light they generate.

Modifying the dye molecules with a form of aluminium has provided an answer, causing the light emitted to be at a slightly different wavelength that does not get re-absorbed. Reports suggest that panels using the MIT technology can deliver ten times more power than a conventional panel. The technology, it is claimed, can be retrofitted over existing solar panels, or used for windows in building integrated PV (BIPV) schemes.

At MIT and the University of Michigan, the use of micro-ring lasers has been tried as a means of narrowing the waveband of the light produced so that less escapes from the panel. Work elsewhere is investigating rare-earth emitters and wavelength-selective filters as means to enhance concentration factors.

Another development attracting interest is the use of semiconductor nanocrystals as the luminescent species. These, it seems, absorb sunlight and re-emit it at red-shifted wavelengths with high quantum efficiency. A large fraction of the emitted light is trapped in the sheet where it can be collected by one or more mono- or bi-facial solar cells, with minimal loss due to prior absorption.

LSC is not the only novel technology able to reduce the use of costly semiconductor material. One intriguing solution is the application of a holographic film overlay, as championed by US company Prism Solar Technologies Inc. This approach is claimed to cut the amount of PV material needed to produce a given amount of electricity by 50-75%, thereby halving module price compared with conventional technology. A film of holographic material applied over a PV array favours the passage of light that is convertible to electricity while rejecting heat-producing radiation.

According to the company, a module using Prism's film will have the efficiency of a good ‘standard’ solar PV panel, approaching 20%, but the cost of a thin-film module (around US$1/W).

Installed as a flat-plate module, it has no costly lenses or trackers. It performs even in cloudy conditions and, with bi-facial cells, can capture light on both front and rear sides of the module – useful in such items as canopies and electric vehicle charging stations. Recently, the firm obtained a US$4.4 million financing facility, enabling it to ramp up its manufacturing plant to an expected 3 MW of capacity by later this year.

A further line of concentrator research is electro-wetting, a technique whereby a surface layer of liquid changes shape with applied electric charge so that incident light is concentrated. This electro-opto-fluidic alternative to mechanical tracking has been investigated by the University of Maryland and Teledyne Inc.

Meanwhile, IBM has used its computing and processor expertise to develop a way of overcoming the undesired side-effect of solar concentration whereby the PV material becomes heated, with accompanying loss of conversion efficiency and possible damage.

IBM's research has shown that interposing a liquid metal, such as vanadium or a compound of gallium and indium, between the PV cell (or processor) and a heat sink, dramatically improves the conduction of thermal energy away from the semiconductor material. In the solar application, the thermal interface layer would allow very high levels of solar concentration to be used without damaging the PV material.

Team members believe that about five times the power density generated by present concentrated PV (CPV) systems is realisable by these means. An experimental system that used a really powerful lens to concentrate the sun's energy in excess of 1500 times was able to hold the temperature of the sample semiconductor material at 85°C.

Check out our other Solar PV articles here.

In part 1. George Marsh: introduction to PV research

In part 2. George Marsh looks at some other novel technologies under development.

In part 3. Joyce Laird takes up the story, talking to some of the leaders of global solar power R&D

In part 4. Joyce Laird looks at 2 innovative areas of PV technology - Screening Engineered Field Effect PV, and Inverted Organic Solar Cells...

Share this article

More services


This article is featured in:
Photovoltaics (PV)




30 April 2013
One area that needs to be concentrated for research is dust non-sticking solar panels.

One problem with solar panels that I have repeatedly raised is dust. It's everywhere, and the atmosphere is full of it — it's estimated that about 1,000 tons of dust fall to Earth from space each year. That's a lot of dust, and it coats everything, including solar panels. And more dust is kicked up by the wind.Desert countries are of course best suited to photovoltaic generation, but keep in mind that arid regions also have a bigger problem with dust, that means PV panels have to be frequently cleaned to maintain optimum power production, and that of course requires a further expenditure of energy for maintenance.

Some countries are setting up Vast solar arrays in desert countries and exporting the power to other countries. And the bigger the solar park, the more people and machines will be needed to keep making the rounds and cleaning the panels, especially after a dust storm. This continuing expenditure of energy for maintenance needs to be taken into account. If cleaning is neglected, then before you know it a solar park's output will drop to half or even below as dust continues to accumulate.

Dust accumulation on the Solar Panels is a big problem especially in arid regions.
Everybody knows anything immobile is quickly covered, whether hanging laundry, parked cars or solar panels.Unless regularly removed, accumulated dust can in one month reduce a solar panel's efficiency by 35 per cent, according to some experts, more if there is a dust storm. Making matters worse is that, in addition to the dust that blows in from the desert, the region's relatively high humidity helps turn fine dust into a sort of crust. "It makes the dust stick,"

Using precious water in those regions is expensive nor regular cleaning manually large installations.

Why not Scientists develop non sticky dust glass ? A glass where the dust won't stick to the surface but slides with a periodic jerk. A motor can be fitted to the solar panels with a Timer and power for the motor can be obtained from solar panels themselves. In Rajasthan,India there is ambitious Solar PV Programme for large scale power. Dust storms in Rajasthan during summer are common which are carried to far way places.
The Loo is a strong, hot and dry summer afternoon wind from the west which blows over the western Indo-Gangetic Plain region of North India and Pakistan. It is especially strong in the months of May and June. Due to its very high temperatures (45 °C–50 °C or 115°F-120°F), exposure to it often leads to fatal heat strokes.

Dr.A.Jagadeesh Nellore(AP),India
E-mail: anumakonda.jagadeesh@gmail.com

Note: The majority of comments posted are created by members of the public. The views expressed are theirs and unless specifically stated are not those Elsevier Ltd. We are not responsible for any content posted by members of the public or content of any third party sites that are accessible through this site. Any links to third party websites from this website do not amount to any endorsement of that site by the Elsevier Ltd and any use of that site by you is at your own risk. For further information, please refer to our Terms & Conditions.